X
تبلیغات
عمران و معماری

عمران و معماری
 
انواع گزارشات کارآموزی برای دانشجویان رشته های عمران

 

در مورد اجرا ٬ مدیریت و طراحی انواع سازه های عمرانی



ادامه مطلب
نوشته شده در تاريخ جمعه بیست و نهم مرداد 1389 توسط 
تعاریف مربوط به تونلها و ساختگاه چاپ فرستادن به ایمیل

مشخصات و ویژگیهای تونلها و نحوه ساخت آنها در تاثیر پذیری آنها از زلزله موثر است. در این قسمت تعاریف مربوط به تونلها بیان شده و اثر هرکدام در تاثیر پذیری تونلها بررسی می‌شود.
1- عمق تونل :
بطور کلی تونلها در مقابل زلزله، نسبت به سایر سازه‌های سطحی بسیار پایدارترند. چرا که جابجائی زمین، دامنه حرکات، شتاب و سرعت ذره‌ای زمین عموما با زیاد شدن عمق، کاهش می‌یابد (مخصوصا اگر زمین نرم باشد)؛ بطوری که در مواردی شتاب زلزله در عمق بیش از 50 متر، حدود 40 درصد کاهش بافته است. البته ذکر این نکته نیز ضروری است که اگر چه شتاب و بعضی پارامترهای دیگر در عمق کمتر از لایه سطحی است، اما مشخصاتی مثل فرکانس زلزله به منبع تولید موج بستگی دارد و تابع عمق زمین نمیباشد. البته باید به این نکته نیز توجه داشت که میزان جابجائی ناشی از گسلش در عمق بیشتر از سطح است که این موضوع در بخش جداگانه‌ای مورد بحث قرار خواهد گرفت.

2-  شکل و اندازه تونل :

همانطور که در بخش قبل اشاره شد، هر چه مقطع تونل بزرگتر باشد، حساسیت آن به زلزله بیشتر است. یکی از موارد بزرگ بودن موضعی تونلها، در تقاطعها و ایستگاههای مترو می‌باشد. همچنین وجود دو یا چند تونل در کنار هم معمولا باعث تمرکز تنشهای استاتیکی در محیط بین تونلها می‌گردد. همین حالت در هنگام گذر موج زلزله که نوعی تنش است، اتفاق می‌افتد.

3-  وضعیت لایه بندی و جنس زمین:

امواج تولید شده در حین حرکت، تحت تاثیر خواص زمین قرار می‌گیرند. امواج فشاری و برشی در سطح برخورد با لایه‌های مختلف دچار انکسار و انعکاس می‌شوند و این باعث افزایش یا کاهش دامنه نوسانها می‌گردد. از طرف دیگر، شرایط و وضعیت خاک تحت الارضی و حتی توپوگرافی یک ناحیه ممکن است عامل افزایش اساسی در شدت جنبشهای سطح زمین گردد. تقویت شتاب در انباشته‌ای نرم بزرگتر از مقدار آن در انباشته‌های سفت می‌باشد.

4- نحوه ساخت تونل:

روشهای مختلفی برای ساخت تونل (کندن تونلها) وجود دارد که بستگی به شرایط ساختگاهی و زمین ساختی روش مناسب انتخاب می‌شود. روشهایی که بیشتر معمول هستند روش حفاری شده و خاکبرداری شده است. در مورد تاثیر نحوه ساخت بر رفتار تونلها جدول زیر در HAZUS99 که توسط NIBS آمریکا ارائه شده است (جدول 4-1). نحوه ساخت تاثیر بسیار زیادی بر اثر پذیری از امواج زلزله دارد، چرا که در روش حفاری، خاک اطراف کاملا دست نخورده باقی می‌ماند و از طرف دیگر این گونه تونلها معمولا در جائی ساخته می‌شوند که عمق قرار گیری تونل زیاد باشد. ولی در تونلهای سطحی مانند تونلهای مترو، اغلب از روش خاکبرداری و پوشش استفاده می‌شود.

 

5- پوشش داخلی تونل (Lining):

پس از حفاری تونل در صورت نیاز از پوشش داخلی برای محافظت در مقابل ریزش استفاده می‌شود. البته مواردی نیز وجود دارد که در صورت استحکام کافی سنگها، از پوشش استفاده نمیشود، ولی در غیر این صورت امکان استفاده از شاتکریت، بتن درجا، و یا اجزای پیش ساخته وجود دارد.

منبع: پایگاه اطلاع رسانی انبوه سازان ایران - anboohsazan.net


نوشته شده در تاريخ جمعه بیست و نهم مرداد 1389 توسط 
بررسی جامع فرو ريزش پل I-35w مينياپوليس، بازرسی تا امداد چاپ فرستادن به ایمیل

در حوزه مدیریت شریان های حیاتی، پل های بزرگراهی و راه آهن دارای اهمیت ویژه ای هستند و در هر دو مقطع مدیریت پیش از بحران و مدیریت بحران نیازمند مطالعات گسترده و اتخاذ تدابیر ویژه می باشند. فــرو ریزش پلI-35w مینـیاپـولیس بر روی رودخـانه می سی سی پی در تاریخ اول آگـوست 2007 نمونه قـابل تعمقی در این خصوص است.موضوع فرو ریزش این پل از آن جهت اهمیتی دو چندان می یابد که بدانیم در سال های 2001 و 2006 نتایج بازدیدهای فنی بروز چنین حادثه ای ناشی از خستگی و اعوجاج اعضای خرپایی عرشه را محتمل دانسته بود ، حال آنکه بسیاری از پل های شریانی کشور ما هیچ گونه برنامه بازدید مشخصی ندارند.
در این مقاله کوشیده شده تا با مطالعاتی دامنه دار و بررسی عمده گزارش های بازرسی دوره ای پلI-35W شامل مطالعات فنی در خصوص فروریزش، نحوه امداد و نجات به هنگام وقوع بحران و همچنین مقایسه تبعات اقتصادی و اجتماعی پس از حادثه مدلی برای سوانح مشابه ایجاد شود تا شاید بتوان با این روش و استقرار سامانه مدیریت یکپارچه پل ها از وقوع تجربه های تلخ مشابه در کشور پیشگیری کرد.

-     مقدمه

به دلیل نقش منحصر به فرد پل ها در عبور ترافیک از روی رودخانه ها، مسیل ها، تقاطع های پر ازدحام شهری و مناطق صعب العبور غیرشهری امکان ترانزیت کالا و مسافر از طریق شبکه راههای زمینی کشور، در گرو برخورداری از پل های ارتباطی مناسب می باشد. افزون بر این، قابلیت استفاده بی وقفه از پل ها در حین و پس از وقوع بلایای طبیعی، زمانی که عملیات امداد نجات باید با حداکثر سرعت ممکن صورت گیرد، اهمیتی دو چندان می یابد. پرهزینه بودن احداث پل ها و جایگاه ویژه آنها در محورهای زمینی تدوین برنامه های جامع را جهت نگهداری، بهسازی و مقاوم سازی این سازه ها اجتناب ناپذیر می نماید. از این رو بازرسی فنی و منظم پل ها جهت حصول اطمینان از ایمنی سازه ای آنها از جمله مسایل مهم در حوزه مدیریت یکپارچه پل ها می باشد.

  در اقصی نقاط جهان می توان نمونه های مختلفی را از تخریب تدریجی پل ها پیش از اتمام عمر مفید آنها ذکرکرد. به عنوان مثال پل کنتیکت در سال 1970 به دلیل شل شدن بست ها و آویزهای نگهدارنده عرشه پل فروریخت و عدم انجام بازرسی های کافی و نگهداری مناسب از سوی اداره راه و ترابری ایالتی به عنوان عامل بروز این حادثه معرفی گردید. پل ریشترو در اتریش در زمان ریزش در سال 1976 از نظر سازه ای در شرایط نامطلوبی قرار داشت. سازه این پل در طول عمر بهره برداری هیچگاه مورد بازرسی فنی قرار نگرفته بود.  پس از فروریزش قسمتی از پل 95-II-35W  که متعاقباً اشاره مفصلی به آن خواهد شد، در کراچی پاکستان و در ویتنام هم پل هایی پیش از بهره برداری فرو ریختند که بر اهمیت این موضوع می افزاید. در گرینویچ در سال 1983، کارشناسان با بررسی آوار و خلق مجدد ریزش اعضایی که گسیختگی سازه ای از آنجا شروع شده بود علت حادثه را شناسایی کردند.

2-   استراتژی نگهداری در سیستم مدیریت پل

استراتژی نگهداری هر چند به عنوان مرحله ای از مراحل مختلف سیستم مدیریت پل مطرح است لیکن به جهت اهمیت و اثرگذاری، بقیه بخش های سیستــم را تحت تأثیر قرار می دهد از ایـن رو پیش از ورود به جزییات پل I-35W به الگویی برای دستیابی به سیستم یکپارچه مدیریت پل اشاره می شود. در میان مراحل گردآوری مستندات، بازرسی، نگهداری، مالی، مدیریت و پایگاه پردازش داده ها، بازرسی رابطه مستقیم و دو طرفه مشهودتری با راهبرد نگهــداری دارد. به عـبارتی نتایج حاصل از عملیات بازرسی به درک عمیق تر از وضعیت کلی پل  و تدوین راهبرد نگهداری مناسب کمک می کند و در عین حال از حیث شیوه، دامنه بازرسی و دوره های زمانی تکرار متأثر از آن است.

 

در راستای حفظ معیار ایمنی بر اساس (DECD 1976) دو راهبرد کلی "نگهداری عکس العملی" و "بازرسی سیستماتیک" تعریف می شود. روش اول به عنوان راهکار مدیریت بحران، بازرسی ها را به اعضای اصلی و در سطحی محدود تعریف می کند در حالی که روش دوم یک روش پیشگیرانه محسوب شده در دوره های زمانی کوتاه تر ارزیابی و بازرسی کلی سازه را مورد توجه قرار می دهد.

هر چند تفهیم منافع مالی مدیریت و نگهداری صحیح پل ناشی از کاهش هزینه های آتی، عملکرد مناسب در شرایط بحرانی (بلایای طبیعی و بحران های نظامی) و کاهش سوانح رانندگی جهت اخذ سرمایه های بیشتر از مدیران چندان آسان نیست لیکن راهبرد عکس العملی ریسک بالایی برای مردم و استفاده کنندگان پل ها در برخواهد داشت. در راستای ایجاد تعامل بیشتر و ترسیم اهمیت راهبردهای پیشگیرانه، سیستم های پیچیده تری از مدیریت پل قابل بهره برداری هستند که در آن بر اساس نگارش یک سناریوی "چه می شود- اگر" تبعات و خسارات خرابی پل به هنگام شرایط اضطراری بیان شده با تخمینی از زمان بازسازی، تبعات سیاسی و منابع مالی و انسانی می توان مدیران و تصمیم گیران را نسبت به پیاده سازی خروجی سیستم ترغیب نمود.

سیستم مدیریت پل زمانی مؤثر خواهد بود که تمام ارکان آن به درستی پیاده شود. کارشناسان و مدیران پل از یک سو باید در گزارشات خود، نتایج را کاملاً شفاف و جامع ارائه کنند و از سویی دیگر دست اندرکاران و بهره برداران، التزامی عملی نسبت به پیاده سازی و تخصیص منابع آن داشته باشند.

برای تأثیر گذاری سیستم مدیریت پل باید تمامی اطلاعات لازم به عنوان ورودی در اختیار آن قرار گیرد. در مقابل این ورودی با تعامل اجزایBMS می تـوان خروجی شفافـی شـامل یک زمـان بندیمحدود ارائه نمود. این زمان بندی محدود در حقیقت همان بعد الزام آور عمل به راهکارهای نگهداری است. براساس این خروجی پلهای معیوب بر اساس نیاز تعمیرات طبقه بندی و با اولویت بندی روش های نگهداری از هیچ کار تا تخریب کامل و بازسازی پل راهکار ارائه می گردد.

 همانگونه که اشاره شد این راهبرد نگهداری یا خروجی سیستم در ارتباطی تنگاتنگ با مرحله بازرسی پل است. از جمله فرآیندهای ضروری بازرسی پل به عنوان یک فعالیت کاملاً تخصصی تهیه اطلاعاتی برای انتخاب یک راهبرد نگهداری مناسب و تعیین نقاط بالقوه معیوب است.

در یک سیستم موفق مدیریت پل که اطلاعات پردازش شده بازرسی و روش های نگهداری و تعمیر تدوین شده آن توسط یک الگوریتم مدون شده باشد و این الگوریتم حاوی پیشنهاداتی از صرف بودجه تا برنامه ریزی استراتژی بلند مدت نگهداری باشد، مرحله مدیریت کلیدی ترین بخش سیستم است. این مهم به ویژگی های منحصر به فرد هر پل و عوامل متعدد تأثیرگذار بر آن بازمی گردد که علی رغم طراحی آن الگوریتم مدون حضور مدیر تصمیم گیر برای اولویت بندی ها و کارشناس خبره جهت قضاوت های مهندسی را کمرنگ نمی کند.

 

3-   معرفی پل I-35W

پروژه ساخت پل I-35W بر روی رودخانه می سی سی پی در ایالت مینسوتا (Minnesota) در ایالات متحده در سال 1964 آغاز و برای احداث آن مبلغ 5269002 دلار هزینه شد. خرپای فولادی پل متشکل از سه بخش بود؛ عرشه، روسازه و زیر سازه. پل I-35W در ماه نوامبر سال 1967 با سه محور عبوری در هر جهت به بهره برداری رسید. در سال 1988 یک محور عبوری دیگر در هر جهت به پل اضافه شد تا تغییرات ترافیکی حاصل از احداث راههای مختلف در دو طرف پل کنترل گردد. بدین ترتیب عرشه پل در هر دو جهت دارای درزی طولی موازی با امتداد عبور ترافیک بود.

 طول این پل چهارده دهانه، 581 متر و عرض آن 34 متر بوده است. دهانه های ورودی جنوبی (دهانه های 1تا5) از شاه تیرهای فولادی و دهانه های اصلی پل (دهانه های 6 تا 8) از خرپاهای فولادی عرشه ساخته شده بودند. دهانه های ورودی شمالی نیز از شاه تیرهای فولادی (دهانه های 9 تا 11) و دال بتنی (دهانه های 12 تا 14) تشکیل یافته بودند. عرشه پل به مساحت تقریبی 2m 19754  دارای هشت خط عبوری (4 خط رفت و 4 جهت برگشت) و ارتفاع تراز زیر پل از تراز متوسط سطح آب می سی سی پی 6/19 متر بود. براساس آمار سال  2004  اداره راه و ترابری ایالت مینستوتا به طور متوسط روزانه 141000 خودرو از پل عبور می کرده است.

بارهای ترافیکی به دو خرپای فولادی به موازات امتداد ترافیک منتقل می شدند که طول این خرپاهای متقارن در دهانه های 6 و 8 به 81 متر می رسید. از جمله موارد منحصر به فرد در مورد این سازه استفاده از قوس های فولادی 140 متری در دهانه هفتم بوده است. خرپاهای این دهانه از اعضای جوش شده ساخته شده بود که ارتفاع تقریبی آن در کنار پایه های واقع در حاشیه رودخانه به 5/18 متر می رسید. دو خرپای موازی امتداد عبور ترافیک به وسیله تیرهای خرپایی جوش شده جانبی کف به عمق تقریبی 7/3 متر و تراورس های فولادی روی پل به طول 85 سانتیمتر به هم متصل شده بودند. این تراورس های موازی، بار عرشه و بارهای ترافیکی را به تیر خرپایی کف منتقل می نمودند. سیستم سازه ای فوق به دلیل کارکرد می سی سی پی به عنوان یک شاهراه آبی ترانزیت کالا و عدم امکان احداث پایه در رودخانه مورد استفاده قرار گرفته بود.

 

پل I-35W در ساعت 6:05 بعد از ظهر روز اول آگوست سال 2007 میلادی به طور کامل به داخل آب های می سی سی پی فروریخت. در هنگام ریزش عملیات ترمیم آسفالت رو سازه پل در جریان و دو محور در هر جهت مسدود و مطابق برنامه ریزی های صورت گرفته جایگزینی و نوسازی  پل برای سال 2025-2020 برنامه ریزی شده بود. در خلال ریزش، قسمت جنوبی پل رفتار سازه ای متفاوتی از خود بروز داد. این قسمت قریب به 15 متر به طرف شرق تغییر مکان داد، در حالی که بقیه قسمت های پل به صورت درجا فرو ریخت .

 

4-   پیشینه بازرسی های پل I-35W

در سال 2001 به دنبال ظهور آثار خستگی که عمدتاً در نتیجه اعوجاج پیش بینی نشده تیر ورق ها به وجود آمده بود، تحقیقاتی از سوی دانشگاه مینسوتا بر روی این پل انجام گرفت. نگرانی از بروز خستگی در سیستم خرپایی اصلی (سیستم خرپای کف پل) کارشناسان را مجبور به مطالعه کلیه ترک های سیستم خرپای عرشه نمود. تنش های محاسبه شده در بسیاری از جزئیات سازه ای پل از جمله سخت کننده های جوش شده طولی، سخت کننده جوش شده به صفحات داخل اعضای کششی و لقمه ها از تنش آستانه خستگی بیشتر بودند. بر مبنای این مطالعات ترک های مشاهده شده در سیستم سازه ای پل به پدیده خستگی بی ارتباط دانسته شد. افزون براین، نتایج مدل سازی ها احتمال بروز ترک های ناشی از خستگی را در طول عمر بهره برداری پل مردود دانست. شایان ذکر است مطالعات مذکور بر پایه عبور 15000 خودرو در روز انجام گرفت.

نکته شایان تامل در مورد نتایج این تحقیقات این است که تنش های محاسبه شده برای پل در این پژوهش از تنش آستانه خستگی بار زنده آئین نامه AASHTO بیشتر بود اما با این منطق که شرایط موجود در AASHTO ممکن است در طول عمر بهره برداری دفعات اندکی اتفاق بیفتد و با توجه به کمتر بودن چشمگیر مقادیر تنش اندازه گیری شده از تنش آستانه خستگی بار زنده آئین نامه AASHTO امکان بروز پدیده خستگی در پل مزبور مردود دانسته شد. این در حالیست که ریزش پل I-35W در ساعت اوج ترافیک روی داد و در لحظه ریزش پل ترافیک بسیار سنگینی بر روی پل در جریان بود. در پایان مطالعات فوق، پیشنهاد شده بود پل هر شش ماه یکبار مورد بازرسی قرار گیرد.

 همچنین در سال 2006 پل به طور کامل بازدید شد. شرکت U.R.S طی قراردادی با اداره راه و ترابری مینسوتا یک تحلیل خستگی جامع برای پل انجام داد. در نتیجه این تحلیل ها پیشنهاد شد صفحات فولادی بر روی 52 قطعه از حساس ترین و بحرانی ترین اعضای خرپایی اضافه شود و جزئیات جوش این اعضا به صورت چشمی به دقت بازرسی و نواقص موجود برطرف گردد. در نتیجه این بازرسی ها ترک های خستگی زیادی در ناحیه دهانه های ورودی و خروجی و همچنین ترک ها و نواقص سازه ای متعددی در دیگر قسمت ها مشاهده گردید. از جمله ضعف های سازه ای مشاهده شده می توان به نواقص اجرای جوش قطعات سازه ای و کاهش سطح مقطع اعضای خرپایی داخلی بر اثر خوردگی اشاره نمود.

براساس اظهارات وزیر راه و ترابری ایالات متحده پل I-35W در سیستم بازرسی یکپارچگی سازه ای 50 امتیاز کسب نمود که حداکثر امتیاز این سیستم بازرسی 120 می باشد. بر اساس سیستم امتیاز دهی FHWA امتیاز 50 بیانگر آن است که سازه پل فرسوده بوده و نیاز به بهسازی داشته است اما بروز حادثه ای با این ابعاد پیش بینی نمی شد. گزارش بازرسی ترک های بحرانی که توسط تیمی از بازرسان فنی اداره راه و ترابری مینسوتا ارائه شده است مشکلات خاصی را که سبب کسب امتیاز پایین پل I-35W شد، تشریح می نماید. امتیاز پایین را می توان به خوردگی اعضا در ناحیه ای که لایه رنگ پل کیفیت خود را از دست داده است، نواقص جوشکاری اعضای فولادی خرپایی و تیرهای کف، عدم حرکت تکیه گاه ها مطابق طراحی های اولیه و نیاز به ترمیم ترک های ناشی از خستگی در تیرهای خرپایی جانبی و دهانه های ورودی نسبت داد.

به دنبال این حادثه فاجعه بار مقامات قوانین مربوط به ایمنی سازه ها را مورد بررسی مجدد قرار می دادند تا در صورت نیاز قوانین سخت گیرانه تری اعمال گردد.

5-   مدیریت بحران

در این حادثه 14 نفر جان باختند و بیمارستان های منطقه با تمام ظرفیت به ارائه خدمات به مجروحین حادثه پرداختند. رئیس جمهور ایالات متحده بلافاصله پس از حادثه وزیر راه و ترابری را به محل حادثه فرستاد و خواستار گزارش اولیه بازدید محل حادثه در اسرع وقت شد. همچنین مقاماتی از سوی اداره راه و ترابری، شورای ملی امنیت راه و ترابری، آژانس فدرال مدیریت بحران و FBI از محل حادثه بازدید کردند. تیم های مختلف غواصی و امداد رسانی به محل اعزام و مسیرهای جایگزین جهت حل معضلات ترافیکی اعلام گردید. در جریان امداد رسانی علاوه بر تیم های غواصی از قایق های نجات، هلی کوپتر و ماشین آلات لازم جهت جابجایی قطعات سنگین استفاده شد و در اولین روزها پس از وقوع حادثه رئیس جمهور و سایر مقامات ایالات متحده نیز از محل بازدید کردند.

به دلیل اهمیت فوق العاده سرعت انجام عملیات و از آنجا که بیرون کشیدن تمامی ماشین ها از داخل رودخانه مستلزم جابجا کردن قطعات بسیار بزرگ و سنگین آوار و در نتیجه از دست رفتن زمان بود در نخستین روزهای پس از حادثه ابتدا ماشین هایی که اجساد کشته شدگان در آنها قرار داشت از آب بیرون کشیده شد و ماشین های خالی علامت گذاری و موقتاً به حال خود رها شدند.

 

6-   بازرسی عمومی پل ها در ایالات متحده

 در ایالات متحده مجموعاٌ تعداد000 600 پل بزرگ ثبت شده وجود دارد. براساس استاندارد ملی بازدید پل ها در امریکا (NBIS)، که در اوایل دهه 70 به اجرا گذارده شده است، پل ها با طول بیش از 6 متر که در جاده های عمومی کشور قرار دارند باید هر دو سال یکبار مورد بازدید قرار گیرند. ایمنی سازه ها با انجام بازرسی ها و رتبه بندی اعضایی همچون عرشه، رو سازه و زیر سازه تأمین می گردد. این در حالیست که اگر پل در شرایط بسیار خوبی باشد، بازرسی ها هر 4 سال یکبار انجام می پذیرد. تقریباً 83% از پلهای امریکا هر دو سال یکبار، 12% یکبار در سال و 5% هر 4 سال یکبار بازرسی می گردند. پس از فروریزش پل I-35W  از آنجا که علت حادثه به طور قطع مشخص نمی باشد، ادارات راه و ترابری کلیه ایالت های امریکا موظف به بازدید فوری پل هایی با سیستم سازه ای مشابه پل I-35W شدند.

پس از انجام بازدیدهای فنی کارایی سازه ای و یا نواقص سازه ای پل ها مشخص می گردد. وجود ناکارایی سازه ای بدین معناست که برخی از المانهای پل نیاز به کنترل منظم و یا تعمیر دارند. ناکارایی سازه ای به معنی ناایمن بودن و یا احتمال ریزش کلی پل نمی باشد بلکه لزوم پایش سازه پل، انجام بازدیدهای منظم و بهسازی پل را بیان می نماید. اکثر پل های دارای نواقص سازه ای در جریان بهسازی و اجرای تعمیرات باز می مانند و ترافیک بر روی آنها در جریان است. در صورتی که بازرسان شرایط سازه ای پل را ناایمن تشخیص دهند ساعات عبور خودروها از روی پل را محدود می کنند و یا پل را به کل می بندند.

بر اساس آخرین گزارش اداره راه و ترابری ایالت Minnesota طی سالهای 2004-2006 بطور متوسط سالانه 2300000 دلار صرف بازرسی پلهای این ایالت شده است. این در حالیست که با شرایط امروز احداث تنها یک پل با ابعاد پل I-35W بطور تقریبی 20000000 دلار هزینه در بر خواهد داشت.  به دنبال بروز این حادثه نگرانی ها در مورد ایمنی سازه پل ها افزایش یافته است. آمارهای منتشره از سوی انجمن مهندسان عمران امریکا حاکی از آن است که تعمیر تمامی پل هایی که دارای نقص سازه ای هستند بیش از 188 میلیارد دلار هزینه خواهد داشت (4/9 میلیارد دلار در سال به مدت 20 سال). حدود 3/8 میلیارد دلار از این مبلغ جهت رفع نواقص سازه ای ناش از خوردگی اجزای بتنی و فولادی صرف می شود.  این ارقام بیانگر این واقعیت است که با تخصیص منابع مالی مناسب که در مقایسه با هزینه احداث پلها ناچیز می نماید می توان در ارتباط با وضعیت سازه ای و ایمنی پلها اطلاعات ارزشمندی حاصل و با اولویت بندی پروژه ها تدابیر لازم را جهت ترمیم، بهسازی و مقاوم سازی آنها اتخاذ کرد. 

7-   جمع بندی و نتیجه گیری

بی توجهی به نتایج بررسی های سازه ای و عدم توجه بهنگام به بهسازی و مقاوم سازی پل زمینه ساز بروز فاجعه فروریزش پل I-35W  و وارد آمدن خسارات جانی و مالی بسیاری گردید. در نتیجه وقوع این حادثه شاهراه حیاتی I-35W  و مسیر آبی استراتژیک می سی سی پی قطع و نظم ترافیکی شهر  Minneapolis مختل شد که افزون بر زیانهای مالی درازمدت اتلاف عظیم انرژی و زمان را به دنبال خواهد داشت. بروز این وضعیت در صورت وقوع حوادث مشابه کاملا محتمل است. بنابراین:

·       بازدیدهای فنی منظم، بهسازی و مقاوم سازی پل ها با توجه به آیین نامه های فنی معتبر جهت حصول اطمینان از امنیت سازه ای آنها برای پیشگیری از حوادث مشابه ضرورتی اجتناب ناپذیر می باشد. با تخصیص منابع مالی مناسب که در مقایسه با هزینه احداث پلها ناچیز می نماید می توان اطلاعات ارزشمندی در ارتباط با وضعیت سازه ای و ایمنی پل ها حاصل و با اولویت بندی پروژه ها تدابیر لازم را جهت اقدامات اصلاحی اتخاذ کرد.

·     بر اساس رخداد فروریزش پل I-35W در سال 2007 که چندین مرحله مورد بازرسی های فنی کلی قرار گرفته بود لزوم بکارگیری سیستم جامع مدیریت پل به اثبات می رسد که شامل راهبرد الزام آور نگهداری نیز باشد.

·     انتخاب راهبرد های پیگیرانه نگهداری و بهسازی پل ها با توجه به اهمیت شریان حیاتی مربوط به پل نسبت به هر روش مقابله با بحران ارجحیت دارد و در این زمینه بکارگیری سناریوهای what-if توصیه می شود.

·     درک لزوم بهسازی لرزه ای پل ها همزمان با ترمیم دیگر خرابی های موجود پل در میان کارفرمایان و بهره برداران از اهمیت ویژه ای برخوردار است چرا که بنابر رویکرد موجود کارفرمایان و دستگاههای بهره بردار به جهت کاهش هزینه های مطالعاتی فاز مطالعات کمی از دستور مطالعات بهسازی حذف می شود.

 

8- منابع

1-   مدیریت پل- معاونت آموزش،تحقیقات و فناوری پژوهشکده حمل و نقل

 2-    Bridge inventory- non-deficient and deficient, NTSB publication, 2007.

 3-    Fatigue evaluation of deck truss of bridge I-35W, O’Connell, H.M., Dexter, R.J., Bergson, B., Minnesota Department of Transportation, 2001.

 4-     Fuhrman, K., Desens, K., Desens,V., Minnesota Department of Transportation bridge inspection report, Metro technical document, 2007.

منبع: وبلاگ سهیل آل رسول - payamomran.blogfa.com


نوشته شده در تاريخ جمعه بیست و نهم مرداد 1389 توسط 
نکاتی درباره حفاری چاپ فرستادن به ایمیل

كندن چاه و رسیدن به هدف مورد نظر را حفاری می گویند حفاری یكی از كارهای پیچیده و گران و طاقت فرسا وتخصصی در صنعت نفت بشمار می رود. هر كاری كه ما قبل از حفاری انجام داده باشیم در صورتی كه عمل حفاری بدرستی انجام نگیرد بی فایده است.بنابراین به حفاری خیلی اهمیت می دهند قبل از حفاری ما فقط با تخیل و فرضیات مختلف لایه ها و عمق ها را تعیین می كنیم ولی در حفاری واقعاً به اینها می رسیم زمین شناس، مهندس راه و ساختمان، حفار و … همه دست به دست هم می دهند تا حفاری به طور مداوم انجام شود. چون هزینه دكل و لوازم حفاری خیلی گران است.بنابراین حفاری در سه نوبت و بطور 24 ساعته انجام می گیرد.
تعیین محل حفاری نیز مهم است مثلاً فاصله آن از مناطق مسكونی، چاههای مجاور، مسكونی فشار قوی برق و ….. كه اینها همه تخصصی و مخصوص به خود را دارند بعد از تعیین محل مهندس راه و ساختمان اقدام به نصب كردن وسایل مورد نیاز، اتاق ها، جاده و … می كند سپس دكل به منطقه آورده می شود و عمل بطور 24 ساعته انجام می شود. عمل حفاری بوسیله دکل صورت میگیرد . این دکل ابتدا بصورت جدا از هم به محل آورده میشود . سپس آن را در محل سر هم کرده و آمده حفاری میکنند . دکل و وسایل حفاری بصورت کرایه ای و گران قیمت می باشند بنابراین عمل حفاری بصورت 24 ساعته انجام میگیرد .

لوازم و قطعات حفاری عبارتند از :


1) Hook
قلاب آویزان از قطعات و رشته های بالا و پایین رو و متصل به دکل حفاری

2) Swivel
دستگاه متصل کننده قسمتهای دوار داخل چاه و قسمت های ثابت در خارج

3) Mud line
لوله قابل انعطاف ( لاستیکی ) جهت انتقال گل حفاری به داخل لوله های حفاری

4) Derrick
دکل حفاری

5) Kelly
لوله با قطع 6 ضلعی یا 4 ضلعی که بوسیله یک رابط به ........ و از طرف دیگر به لوله های حفاری داخل چاه متصل میگردد

6) Stand pipe
لوله انتقال گل از داخل پمپها به لوله لاستیکی

7) Kelly bushing
بوشن که با دواران خود ... را به حرکت در می آورد

8) Rotary table
صفحه دوار

9) Sub-Structure
پایه های زیر دکل

10) Foundation
پی بتونی زیر دکل

11) Seller
چاله ای که جاه در آن حفر میشود

12) Blow out control
دستگاه جلوگیری کننده از فوران چاه

13) Flow line
لوله انتقال گل برگشتی از داخل چاه به مخازن گل حفاری

14) Shale shaker
محل تفکیک گل حفاری از مواد و سنگ ریزه های حفاری شده

15) Screen
توری فلزی یا الک

16) Return tank
مخزن یا محل تجمع گل برگشتی از چاه

17) Mud pump
پمپ های ارسال گاز از .... به داخل چاه

18) Casing
لوله های دیوار بندی در اندازه های مختلف

19) Annulus
مجرای برگشت گل و مواد حفاری شده از چاه به خارج

20) Drill pipe
لوله حفاری که محتوی گل ارسالی به داخل چاه است

21) Bit
مته حفاری

عمل حفاری بصورت 24 ساعته و در 3 نوبت کاری انجام می شود . ولی همه افرادی که برای حفاری استخدام میشوند بصورت اقماری هستند و باید هر زمان که لازم باشد آماده کار باشند . کما اینکه در بعضی موارد حتی تا 3 روز یا بیشتر فرد وقت استراحت ندارد . عمل طاقت فرسا / وقت گیر / پر هزینه / خطرناک /آلوده کننده محیط زیست /.... انجام میگیرد تا چاه به نتیجه برسد.

گل حفاری

یكی از حفاری دورانی گل حفاری است گل حفاری نقش مهم و حساسی در حفاری دارد در واقع سرمایه های مالی و انسانی به این ماده بستگی دارد و اشتباهی در انتخاب كردن نوع و وزن آن از بسته شدن چاه تا ذوب شدن دكل و نابود شدن انسان های بسیاری همراه است. مسیر حركت گل بصورت مسیر بسته واز كناردكل شروع شده از درون لوله های حفاری عبور كرده سپس از شكافهای درون مته خارج و بعد از آن از كناره هی لوله حفاری به محل اولیه خود بر میگردد در این مسیر گل نقش های تعیین كننده ای دارد. كه عبارتنداز:

- خارج كردن خوده سنگهای كنده شده ازاطراف مته و آوردن آنها به سطح
- خنك كردن و تقلیل اصطحلاك مته با زمین
- محافظت دیواره چاه و ممانعت از ریزش طبقات
- ایجاد تعادل بین مایعات طبقه ای و مایعات داخل چاه
- انتقال گاز و یا نفت طبقات زیرزمینی به سطح و دستگاههای اندازه گیری مثل دستگاه شناسی گازها و یا دستگاه تعیین كننده نوع گاز

وظیفه اصلی گل ثابت نگه داشتن فشار هیدرواستاتیكی در داخل چاه است اگر فشار گل از فشار مواد موجود در داخل چاه بیشتر باشد در این صورت گل به داخل سازنده ها نفوذ كرده و باعث كم شدن (loss) گل می شود. اگر حفار سرچاهی متوجه این جریان نشود گل به سرعت كم شده و بعد از تمام شدن و یا كم شدن فشار گل چاه فوران (flow rate) می كند این موجب می شود كه دكل حفاری نابود شود در سازنده هایی كه گاز و یا نفت وجود دارد این جریان با آتش سوزی همراه بوده و موجب گیر كردن لوله حفاری در چاه می شود كه این موجب اشكال در حفاری می شود برای سنگین كردن گل از مواد مختلفی همچون نمك و … استفاده می شود كه این تركیبات را با آزمایش بدست آورده اند.

مواد مورد استفاده در گل حفاری

برای انجام مراحل مختلف اکتشاف مواد معدنی فلزی و غیر فلزی ، نفت ، گاز و آب و همچنین به منظور بررسی و مطالعه خصوصیات سنگ شناسی ، آلتراسیون و کانی سازی لایه‌های زیرزمینی یک منطقه به حفاری می‌پردازند. انواع مهم حفاری عبارتند از : نوع مقر گیر ، نوع روتاری و نوع ضربه‌ای. مواردی که برای حفاری استفاده می‌شود تابع روش حفاری ، مقاومت سنگها ، میزان شکستگی ، عمق ، مواد گازی و ترکیب کانی شناسی سنگ است.

نقش مواد در گل حفاری

کنترل وزن مخصوص
برای منترل مخصوص از باریت ، گالن و آهک استفاده می‌شود. در مواردی که فشار آب و یا گاز در منطقه حفاری زیاد باشد، یا حفاری در سنگ خاصی (نظیر شیل) صورت گیرد، از باریت می‌توان استفاده نمود. در صورتی که فشار آب و یا گاز در سنگهایی که حفاری می‌شود خیلی زیاد باشد، از گالن استفاده می‌کنند. از آهک به منظور کاهش وزن مخصوص کمک می‌گیرد.

مواد تغییر دهنده غلظت
به منظور بازیابی سریع مواد حفاری شده ، جلوگیری از گیر کردن مته و افزایش سرعت حفاری ، از نبتونیت سدیم‌دار ، اتاپولژیت (Attapulgite) ، آزبست ، موسکویت ، گرافیت و دیاتومیت می‌توان استفاده کرد.

کنترل ترکیب شیمیایی محلول حفاری
ترکیب شیمیایی محلول حفاری بر غلظت ، وزن مخصوص ، سرعت حفاری و دستگاههای حفاری تاثیر مستقیم می‌گذارد. مواد معدنی مورد استفاده عبارتند از بی‌کربنات سدیم ، نمک ، آهک ، دولومیت و ژیپس.

مواد معدنی که در حفاری استفاده می‌شوند.

بنتونیت :
به منظور جلوگیری از هدر رفتن محلول حفاری در چاههایی که درز و شکاف زیاد دارند. می‌تواند از نبتونیت سدیم‌دار به عنوان پوشش داخلی سطح چاه استفاده نمود. نبتونیت خاصیت کلوئیدی را افزایش می‌دهد. و در نتیجه درصد بازیابی پودر و سنگ افزایش می‌یابد.

میکا :
برای جلوگری از گیر کردن مته در سنگهای دارای خاصیت چسبندگی زیاد ، نظیر وزن گسلی یا در سنگهای مارنی از میکا باید استفاده شود.

گرافیت :
هر گاه مته و محور آن به هنگام حفاری گیر کند استفاده از گرافیت لازم می‌آید که البته بعد از بر طرف شدن مانع باید آن را از چاه خارج کرد.

باریت :
برای کنترل وزن مخصوص از باریت استفاده می‌کنند.

گالن :
به منظور کنترل وزن مخصوص از گالن استفاده می‌نمایند.

آهک و دولومیت :
جهت کاهش وزن مخصوص و کنترل خاصیت قلیای از آهک و دولومیت می‌توان استفاده نمود.

ژیپس :
برای جلوگیری از آلودگی کربنات و همچنین جهت لخته کردن کانیهای رسی از ژیپس استفاده می‌شود.

آزبست :
به منظور افزایش درصد مواد حفاری می‌توان از آزبست استفاده نمود.

نمک :
در موقع حفاری به منظور کنترل قطر چاه و همچنین برای کنترل پراکندگی رسها از نمک استفاده می‌شود.

کربنات و بی‌کربنات سدیم :
به منظور کنترل محلولها و جلوگیری از خطر آلودگی ، کربنات را مورد استفاده قرار می‌دهند.

پرلیت و خاکسترهای آتشفشانی :
این مواد به عنوان سیمان بکار می‌روند

حفاری جهت دار

مواقعی پیش می آید كه حفاری عمودی غیر ممكن است مثلاً مخزن ما زیر منطقه مسكونی و یاتجاری و … آنجا غیر ممكن است قرار دارد یادر بعضی مواقع قطعه ای درچاه گم شده و عمل حفاری غیر ممكن است بعضی از مخازن نیز cllovser آنها بصورتی است كه اگر اقدام به حفاری عمودی كردیم چاه به آب نمك نشسته واز كار می افتد در این موقعیت ها تكنولوژی هایی وجود دارد كه حفاران میتوانند بوسیله آنها اقدام به حفاری جهت دار كنند این نكته نیز قابل توجه است كه لوله حفاری قادر به خم شدن حتی تا زاویه 90 نیز می باشد.
حفاری جهت دار روش های متفاوتی دارد مثلاً‌ از ابتدا جهت دار حفاری كنیم و یا اینكه مقداری عمودی و مقداری جهت دار. در بعضی موارد زمین شناس تشخیص می دهد سازنده ی كه به آن حفاری عمودی برخورد می كنند باحفاری جهت دار برخورد نمی كنند در صورتی كه این سازنده سخت باشد عمل حفاری كند پیش می رود بنابراین با برنامه ریزی دقیق و حساب شده به اصطلاح لایه را دور می زنند در مناطق دریایی هزینه سكوی نفتی گران تمام می شود بنابراین با یك سكوی نفتی از چندین مخزن مختلف برداشت می كنند و ابتكار فقط با حفاری جهت دار امكان پذیر است.

منبع: ایران سازه - iransaze.ir


نوشته شده در تاريخ جمعه بیست و نهم مرداد 1389 توسط 
بررسی پل های چوبی چاپ فرستادن به ایمیل
مقاومت چوب، وزن کم آن و قابلیت جذب انرژی آن، دقیقاً خصوصیاتی است که در ساخت پل به دنبال آن هستیم. چوب دارای قابلیت تحمل اضافه‌بارهای کوتاه مدت بدون دیدن کوچکترین آسیب است. بر خلاف تصور عموم، قطعات بزرگ چوبی مقاومت بسیار خوبی در برابر آتش نشان می‌دهند تا حدی که همپا و حتی مقاوم‌تر از سایر مصالح است.
از نقطه نظر اقتصادی چه با در نظر گرفتن هزینه‌های اولیه و ساخت و چه با در نظر گرفتن هزینه‌های نگهداری، چوب بسیار باصرفه‌تر است. اجرای پل چوبی در هر شرایط جوی بدون آسیب به مصالح در هر شرایط جوی امکانپذیر است. چوب بر اثر یخ‌زدن و آب شدن‌های پیاپی آسیب نمی‌بیند و در برابر زیان‌ها و عوارض جانبی استفاده از ضدیخ‌ها که بر سایر انواع پل تاثیرمی‌گذارد مقاوم است. پل‌های چوبی نیاز به تجهیزات خاصی برای نصب ندارند و همچنین می‌توانند بدون نیاز به افراد متخصص و ماهر اجرا شوند. علاوه بر این ظاهر زیبا و دلپسند مخصوصاً در محیط‌های طبیعی دارند.
 
این باور اشتباه که سازه های چوبی عمر کمی دارند، کاربرد چوب را به عنوان مصالح ساختمانی کاهش داده. اگرچه چوب در شرایط خاص در برابر حمله حشرات موذی استعداد تخریب بالایی دارد، ولی اگر در برابر رطوبت محافظت گردد عمر بسیار طولانی پیدا می‌کند. بسیاری از پل‌های پوشیده شده ساخته شده در قرن نوزدهم بیش از صد سال عمر مفید داشتند چون از قرار گرفتن آنها در معرض عوامل مخرب جلوگیری شده بود. اما در کاربردهای امروزی، پوشیده کردن پل چندان عملی و اقتصادی نیست. اما استفاده از نگهدارنده‌ها، دوام چوب را در پل‌های نمایان (exposed) افزایش می‌دهد. استفاده از تکنیک‌های مدرن و مواد نگهدارنده شیمیایی می‌توانند دوام چوب را به 50 سال یا حتی بیشتر برسانند. علاوه بر این چوب‌های پرداخت شده با مواد نگهدارنده نیاز به رنگ ندارند.


ساختن پل‌های چوبی، انتخابی عملی و اقتصادی
باور اشتباه دیگر درباره چوب به عنوان مصالح یک پل آن است که کاربرد آن محدود به سازه‌های کوچک و کم اهمیت است. این باور شاید ناشی از آن است که چوب‌های با مصارف تجاری ابعاد محدودی دارند و مهمولا پیش از اینکه درخت به حداکثر ابعاد خود برسد بریده می‌شود. اگرچه قطر چوب محدود به تنه بریده درخت است اما ظهور چوب glued-laminated مشهور به glulam در حدود چهل سال پیش، دست طراحان را از نظر ابعاد باز گذاشت.

گلولام که پرکاربردترین چوب مدرن است با متصل کردن لایه‌ها یا تخته‌های بریده شده چوب به هم با چسب‌های ساختمانی ضد آب تولید می‌شود. بنابراین قطعات گلولام از نظر طول، عرض و ضخامت تقریباً نامحدود هستند و از نظر شکل متنوع‌اند. گلولام از نقطه نظر طراحی سازه‌ها، مقاومت بیشتری نسبت به تنه بریده درخت دارد و امکان استفاده حداکثر از منابع چوب و کمترین پرت را دارد چرا که اجازه می‌دهد اعضای عظیم سازه‌ای از قطعات کوچکتر چوب ساخته شوند.
پیشرفت تکنولوژی ورقه کردن چوب طی چهار دهه گذشته تناسب و کارایی چوب را در پل‌های بزرگراه‌های مدرن افزایش داده است.

پرداخت چوب برای ساخت پل چوبی مستحکم

برای بیش از 70 سال نگهدارنده‌ای به نام آرسنات مس کُرُم‌دار یا cca برای طیف گسترده‌ای از محصولات چوبی استفاده شده است و به عنوان عمده‌ترین نگهدارند چوب در امریکا و سایر کشورهای جهان برای ساخت صدها سازه از سکوها و پاسیوها گرفته تا ساختمان‌های با قاب چوبی و سازه‌های دریایی. البته این برتری چندان هم بی‌دردسر بدست نیامد. در دهه 70 گروه‌های محیط زیستی بر سلامت کارگران مشغول به کار در صنعت نگهدارنده‌های چوب تاکید بسیاری داشتند و در دهه 80 اثرات زیست‌محیطی چوب‌های پرداخت‌شده با cca را زیر سوال بردند اما در همان دهه سازمان‌ حفاظت محیط زیست امریکا پی برد که فواید آن بسیار بیشتر از خطرات احتمالی ای است که به نظر می‌آید.
سپس در دهه 90 فشارها بر مصرف خود cca وارد شد و در سال 2002 نام آنرا از cca به epa تغییر دادند و در سال 2004 نسل جدیدی از نگهدارنده‌ها را به منظور پرداخت چوب‌های غیر صنعتی تولید نمودند.

منبع: وبلاگ سهراب وجیهی


نوشته شده در تاريخ جمعه بیست و نهم مرداد 1389 توسط 
گزارشی از راه جايگزين و پل‌های بزرگ سد کارون 3 چاپ فرستادن به ایمیل

رود کارون از ارتفاعات زردکوه بختیاری در رشته کوه زاگرس سرچشمه گرفته و با طول 950 کیلومتر بزرگترین و پرآبترین رودخانه ایران است. به دلیل اختلاف تراز بسیار زیاد بین بالاترین نقطه حوضه کارون ( قله دنا ) و پایینترین آن ( دشت خوزستان ) و هم چنین با توجه به طول زیاد حوضه آبریز کارون این امکان مهیا گردیده است که با احداث سدهای گوناگون ضمن ذخیره و تنظیم آب وکنترل سیلاب های مخرب کارون، از این انرژی بالقوه برای تامین بخشی از برق مورد نیاز کشور استفاده شود.‌‌‌‌
با احداث سد و نیروگاه کارون 3 و آبگیری دریاچه سد در مسیر اهواز - شهرکرد بخشی از این محور به زیر آب می‌رفت. محور مذکور بخشی از محور ارتباطی بین دو استان خوزستان و چهارمحال و بختیاری محسوب می شود که از اواخر سال 1374 مورد بهره برداری قرارگرفته بود. بنابراین میبایست راهی احداث می‌شد که همزمان با آبگیری سد خللی در این ارتباط به وجود نیاید. به همین دلیل جادهای جایگزین، در ارتفاعی بالاتر از سطح دریاچه سد طراحی و اجرا گردید. در این گزارش با پروژه مذکور بیشتر آشنا خواهید شد.

·         انتخاب طرح برتر

 راه جایگزین سد کارون 3 از حوضه آبریز رودخانه های بزرگ کارون، زهره وجراحی میگذرد. وسعت این حوزه بالغ بر 111209 کیلومترمربع است که معادل 17درصد مساحت کل کشور میشود. مجموع آب سالانه این رودخانه ها به طور متوسط برابر با 22321 میلیون مترمکعب است. ارتفاع سد کارون 3 ، 205 متر است و دریاچه اش نزدیک به سه میلیارد مترمکعب حجم دارد. این دریاچه سطحی به وسعت 48 کیلومترمربع و طولی برابر با 60 کیلومتر را در بر خواهد گرفت . از نظر توپوگرافی راه جایگزین در منطقه ای کوهستانی قرار گرفته که شیب آن در اغلب جهات به خصوص به سمت رودخانههای فرعی بسیار تند است. به همین دلیل ایجاد راه های دسترسی برای احداث ترانشه ها ، ساخت تونلها و پایه های پلها با سختی و صعوبت بسیار بالا انجام گرفته است. با استفاده از عکسهای هوایی، بازدیدها و بررسی‌های محلی، مطالعه گزینه های مختلف، رعایت دستورالعملها و استانداردها بهترین گزینه انتخاب و پلان مسیر با مشخصات هندسی استاندارد تعیین گردید. ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌

کارفرمای این پروژه مجری طرح کارون‌‌ 3‌‌ و مشارکت شرکت‌های ره‌آور- هگزا به‌عنوان مشاوران کارفرما می‌باشند. با پایان یافتن مطالعات و بررسیهای لازم در سال 1380 پیمانکاری که بتواند از عهده اجرای چنین پروژهای با مشکلات و پیچیدگیهای خاص خود برآید انتخاب گردید و اجرای پروژه که به دو بخش سیویل و پلهای فولادی بزرگ تقسیم شده بود در اوایل مهرماه 1380 آغاز گردید. ‌‌‌‌

در بخش سیویل این پروژه شرکت پیمانکاری بین‌المللی استراتوس عهده دار اجرای راه جایگزین ، تونلها، ابنیه فنی و احداث پایه ها و عرشه پلهای بزرگ واقع در مسیر گردید. قرارداد احداث و نصب دو دستگاه پل قوسی بزرگ فولادی در مسیر راه جایگزین نیز با یکی از بزرگترین کارخانههای تولیدات سازههای فولادی کشور (شرکت ماشین‌سازی اراک) منعقد گردید. در بخش نصب پل‌ها علا‌وه بر مشارکت مهندسین مشاور ره‌آور- هگزا، شرکت واگنربیرو از کشور اتریش نیز از طرف ماشین‌سازی اراک به عنوان مشاور و ناظر همکار انتخاب شده بود که متأسفانه همکاری این شرکت در مراحل حساس و کلیدی پایانی پروژه شایسته نبود و پروژه با اتکا به نیروی کاری و متخصص ایرانی و بدون حضور ناظر خارجی با موفقیت تکمیل شد.‌‌‌‌‌‌‌

 

 ·         ویژگی‌های فنی راه‌های جایگزین و تونل‌ها

 طول راه جایگزین 377/7 کیلومتر با عرض 8/11 متر و بر روی دره‌ای به عمق حدود 250‌‌ متر احداث گردیده است. برای آنکه کوتاهترین مسیر احداث شود در طول مسیر 2 پل بزرگ، 3 تونل و20 پل کوچک (کالورت) در نظر گرفته شده است. طول کلی عرشه پل‌های بزرگ به ترتیب 336 و 216 متر بوده و سازه باربر اصلی پل‌ها خرپای فلزی است که به‌صورت زیرقوسی طرح داده شده‌اند. طول تونل‌ها 139 و 153 و113 متر بوده که در چندین مرحله و به کمک مجهزترین ماشین‌آلات حفاری شده است. با توجه به کوهستانی بودن و شیب‌های بسیار تند در نقاط مختلفی از مسیر مطالعه شده احداث راه جایگزین با سختی‌های بسیاری مواجه بوده که با توجه به توانایی پیمانکار (شرکت بین‌المللی استراتوس) این قسمت از پروژه به خوبی انجام گرفته است. اجرای کوله‌ها، پایه‌های بتنی، سرستون‌ها و پاتاق‌ها و عرشه پل‌ها نیز به عهده‌ی پیمانکار سیویل بود که با توجه به توپوگرافی منطقه، اجرای این قسمت‌ها نیز با صرف انرژی فراوان و استفاده از نیروی آموزش‌دیده برای شرایط خاص این پروژه با موفقیت انجام گرفته است.‌

 

·         مشخصات فنی و نحوه اجرای پل‌های بزرگ

 دهانه میانی و اصلی پل اول به صورت قوس از زیر، با دهانه قوس 264 متر است که مرکز تا مرکز مفصل‌ها 252 متر و خیز قوس 42متر می‌باشد، دو دهانه 21 متری پیوسته بر روی پایه‌های بتنی در سمت راست و دو دهانه 12 و 18 متری پیوسته روی پایه‌های بتنی در سمت چپ آن قرار دارد و طول کل عرشه 336 متر و عرض8/11 متر با دو خط عبور و دو پیادهرو در طرفین اجرا شده که از نظر طول دهانه قوسی که تاکنون در کشور اجرا شده است منحصر به ‌فرد می‌باشد.‌

با توجه به دهانه بیش از 150متر پل و تأکید آیین‌نامه‌ها و استانداردهای جهانی، پل به کمک روش دینامیکی آنالیز شده که برای اعمال بارهای جانبی طیف‌های زلزله ناقان و طبس مورد استفاده قرار گرفته است. حداکثر بازتاب‌های دینامیکی سازه از قبیل نیروهای داخلی اعضا، تغییرمکان‌ها و عکس‌العمل‌های تکیه‌گاهی از روش تحلیل دینامیکی تاریخچه زمانی به دست آمد. برش پایه به‌دست آمده برای کل سازه از روش تحلیل دینامیکی طیفی با برش پایه محاسبه شده به‌روش استاتیکی معادل مقایسه و بازتاب‌های محاسبه شده براساس روش‌های آیین‌نامه زلزله ایران - استاندارد 2800‌‌- اصلا‌ح شده‌اند.

بزرگ ترین دهانه پل زیر قوسی موجود در کشور قبلاً پل قطور بوده است که پل ارتباطی مسیر راه آهن ایران- ترکیه می‌باشد. این پل در سال 1344 در ارتفاع 128 متری و با شعاع قوس 232 متر توسط یک شرکت آمریکایی احداث گردیده است. با اتمام پروژه پل اول طرح کارون3، ایران صاحب بزرگترین پل زیر قوسی در خاورمیانه شده است. ‌

 

منحنی قوس پل به صورت سهمی با سیستم خرپایی به ارتفاع 8 متر و عرض 9 متر از مقاطع قوطی شکل می‌باشد. چهار مقطع طولی خرپا توسط مهاربندی‌های افقی و عمودی به یکدیگر متصل و در طرفین با چهار مفصل بر روی فونداسیون قرار می‌گیرند به عبارت دیگر قوس به‌صورت دو مفصل طراحی شده است. عرشه پل به صورت تیر مرکب با چهار شاهتیر طولی به دهانه‌های 12، 18 و21 متری است که به تیرهای عرضی قاب شده و توسط ستون‌ها بر ‌روی قوس متکی می‌باشد. عرشه پل به صورت دال بتنی مسلح روی تیرهای فلزی اجرا شده است.

دو درز انبساط با آزادی حرکتی 70± میلیمتر روی اولین پایه‌های بتنی طرفین دهانه قوس قرار گرفته است که عرشه قوس را از عرشه دهانه‌های کناری جدا می‌سازد. دو تیپ درز انبساط نیز دهانه‌های کناری را از کوله‌ها جدا می‌سازد. یاتاقان‌های دهانه‌های کناری از نوع نئوپرین تیپ2 می‌باشد و یاتاقان‌های عرشه قوس در طرفین و در محل درز انبساط به صورت غلطکی طراحی و ساخته شد که جابه‌جایی افقی آن در امتداد عرشه به وسیله چرخ دنده و شانه‌های راهنما کنترل می‌شود.

وزن کل قطعات فولادی پل اول شامل عرشه، ستون‌ها، خرپای‌قوس ‌و‌... حدود‌‌ 2500‌‌ تن و جنس تمام مواد از نوع فولا‌د کورتن‌دار با مقاومت بالا می‌باشد.

در طرح پل، بارگذاری مطابق با نشریه 139‌‌ سازمان مدیریت و برنامه‌ریزی و آیین‌نامه زلزله 2800 و بارگذاری 519 ایران و طراحی عناصر فلزی پل مطابق با استاندارد ‌‌AASHTO96 ‌‌انجام گرفته است. همچنین از استانداردهای 10155 EN مطابق با DIN آلمان برای مواد کورتن‌دار،‌‌ DIN6914,6915,6916 ‌جهت اتصالات، 1.5 ASWD جهت جوشکاری و نیز استاندارد ASTM برای موارد متفرقه، ملاک عمل قرار گرفته است.‌

طراحی اولیه پل اول با دهانه میانی 204‌‌ متر از نوع زیر قوسی در مدت ‌‌2‌‌ماه بر اساس داده‌ها و نقشه‌برداری انجام شده از طرف مشاور کارفرما، انجام و مصالح برآورد شده، مواد مورد نیاز سفارش‌گذاری شد و‌‌6 ماه پس از طراحی عملیات ساخت نیز با موارد رزرو شده موجود در ماشین‌سازی شروع شد.

اولین شوک پروژه فروردین ماه سال 1381‌‌ مبنی بر اشتباه نقشه برداری و لزوم توقف کار عملیات طراحی و ساخت طی جلسه‌ای در تهران اعلا‌م شد. پس از میخ‌کوبی مجدد و نقشه‌برداری در سایت دهانه اصلی و میانی پل اول به 264 متر تغییر یافت، مشخص گردید که حدود 50 متر دهانه نقشه‌برداری شده کوتاه گزارش داده شده بود. پس از دو ماه کار فشرده در دو شیفت کاری، طراحی و محاسبات اولیه گزینه مورد نظر مجدداً اصلا‌ح و روند طراحی و محاسبات پروژه بهبود یافت. در این زمان مواد سفارش شده قبلی به گمرک رسیده بود و این در حالی بود که طبق محاسبات جدید علا‌وه بر مواد خریداری شده 600 تن مصالح دیگر مورد نیاز بود. طراحی با محدودیت‌های مصالح موجود خریداری شده و سفارش کسری پیگیری شد. برای جلوگیری از تأخیر در اجرای پروژه تصمیم‌گیری شد که از مواد رسیده برای اولویت‌های اول نصب استفاده شود و از مواد سفارش شده جدید برای اولویت‌های بعدی استفاده گردد. همزمان با ادامه فعالیت‌های طراحی و تهیه نقشه‌های ساخت و کنترل، عملیات اولیه شامل قطعه‌زنی، برشکاری، لبه‌سازی، خم‌کاری و سوراخ‌کاری بیش از 360000 قطعه پل آغاز شد.‌‌‌

عملیات ساخت عرشه پل اول به همراه دیگر متعلقات پل نیز به‌موازات ساخت سازه‌ پل‌ و تجهیزات پروژه‌ای ادامه داشت. جهت سادگی و تسریع در عملیات نصب اتصالات اعضای اصلی به صورت ترکیبی پیچ -‌مهره و جوش به طوری‌که سه طرف قوطی‌ها اتصالات اصطکاکی پیچ -مهره و بعد فوقانی آن به صورت جوش در محل طراحی شده بود.

اتصالات المان‌های I شکل ‌نیز به‌صورت اتصالات اصطکاکی پیچ و مهره‌ای در نظر گرفته شده بود. با وجود بیش از 80000 پیچ در طرح پل اول، عملیات سوراخ‌کاری و تجهیزات مورد نیاز آن در مدت زمان معین با پنج دستگاه دریل پرتابل افقی و عمودی و چهار دریل ثابت انجام شد و بالاخره از مهرماه1381‌‌ عملیات پیش مونتاژ قوس و عرشه به صورت جداگانه آغاز شد.

جهت پیش‌مونتاژ نهایی پل به صورت خوابیده و کاهش عملیات پیش مونتاژ فضایی، پیش مونتاژهای صفحه‌ای دو پنلی در کارگاه‌ها در نظر گرفته شد. در این مرحله کلیه اعضای قطری سوراخ‌کاری شده و به پیش مونتاژ صفحه‌ای ارسال و پس از مونتاژ و خیزگیری اعضای اصلی مطابق دیاگرام پیش‌خیز پیش‌بینی شده و نقشه‌های کنترلی تهیه شده به این مجموعه جوش شده و سوراخکاری اتصالات اصلی انجام شد. ‌

به علت بزرگی و حجیم بودن سازه پل ‌و محدودیت‌های سالن‌های کارگاه‌های ماشین‌سازی امکان عملیات پیش مونتاژ در آن‌ها وجود نداشت و پیش مونتاژ در   فضای باز انجام شد. عملیات پیش مونتاژ تیرهای طولی به تیرهای عرضی و کنترل مهاربندهای عرشه و سوراخ‌کاری اتصالات اصلی به‌صورت افقی و عمودی در فضای باز بین سالن‌های شرکت و با توجه به محدودیت‌های تجهیزات، عوامل محیطی و جوی حدود یکسال به طول انجامید و قطعات اول اولویت نصب آبان ماه 1381‌‌برای نصب به کارگاه ارسال شد.

با توجه به وسعت فضای مورد نیاز برای پیش مونتاژ قوس، از انبار شرکت (بزرگ‌ترین سالن شرکت) استفاده شد. این مکان نقشه‌برداری میخ‌کوبی و مثلث‌بندی شده و سازه‌های صفحه‌ای که در کارگاه‌ها پیش مونتاژ و دمونتاژ شده بود در مسیرهای تعیین شده ابتدا به صورت صفحه‌ای به دنبال هم پیش ‌مونتاژ و منحنی آن مطابق دیاگرام خیز نهایی به وسیله برداشت با دوربین کنترل می‌شد.

پس از مونتاژ صفحه زیرین صفحه فوقانی نیز روی آن مونتاژ و کنترل شده و پس از جداسازی صفحه فوقانی، این مونتاژی‌ها با جرثقیل‌های موبایل در موقعیت خود، روی سازه‌های پیش‌بینی شده مستقر و کنترل‌های لازم انجام می‌شد. تمام اعضای مهاری و تیرهای عرضی قوس که قبلا‌ً سوراخکاری شده بود درموقعیت خود قرار گرفته و جوش می‌شدند. برای کنترل و پایداری لازم و ایمنی سازه حدود 200 تن سازه موقت و ساپورت ساخته شد. پیشمونتاژ و ساخت در تیرماه 1382 به پایان رسید. لازم به ذکر است که از سمت راست عملیات دمونتاژ قوس با توجه به اولویت‌های نصب و نیاز سایت انجام و قطعات به سایت ارسال شد.‌

طراحی جرثقیل‌های نصب مطابق آیین نامه ‌های AISC و FEM انجام گرفته است. پس از ساخت سازه جرثقیل‌ها و خرید سیستم‌های مکانیکی و برقی عملیات پیش مونتاژ و کنترل‌های لازم باربری انجام شد. و پس از صحت از کارکرد جرثقیل‌ها دمونتاژ آغاز و قطعات جراثقال به کارگاه ارسال شد. ظرفیت هر کدام از جرثقیل‌ها 20 تن، به عبارتی دو بار 10 تن می‌باشد؛ و وزن هر دستگاه حدود 70 تن است. سازه جرثقیل‌ها طوری طراحی شده که چرخ‌های آن هنگام باربرداری روی چهار ستون پل قرار گرفته و بارها از طریق ستون‌ها به قوس منتقل می‌شود و اثرات نامطلوب انتقال بار از بین‌رفته یا کاهش یافته است. چهار ساپورت مفصلی به منظور جلوگیری از واژگونی جراثقال در هنگام باربرداری تعبیه شده است. دو ماشین حمل قطعات، وظیفه قطعه رسانی از کوله‌ها به پشت جرثقیل‌ها را عهده‌دار بود.

نظر به صعب‌العبور بودن منطقه و عمق بسیار زیاد و شیب طرفین دره و عدم امکان استفاده از پایه‌های موقت و روش‌های نصب متداول دیگر، نصب پل از اهمیت به‌سزایی برخوردار بود. طرح ویژه روش نصب پل با طراحی سازه پل به صورت خودایستا و کنسول و استفاده از جرثقیل‌های دروازه‌ای ویژه از طرفین در نظر گرفته شد. بارهای ناشی از وزن پل، جراثقال‌ها و بارهای جانبی در مراحل نصب توسط سیستم خرپای فضایی متشکل از عرشه پل، خرپای قوس پل و مهارهای قطری به کوله‌ها و پاتاق منتقل می‌شد. تیرهای طولی در انتهای عرشه به کوله‌ها و کوله‌ها با سیستم انکریج و تزریق تا عمق 24 متر به صورت پس تنیده به کوه مهار شده بودند همچنین با همین روش اعضای انتهای خرپای قوس به پاتاق و پاتاق نیز به کوه مهار شده بود.‌

 گره‌های بحرانی پل، به خصوص تکیه‌گاه‌های موقت نصب که می‌بایست نیروهایی با مقادیر زیاد و با نوسان بارگذاری را انتقال دهند، علاوه بر روش‌های کنترل شده با روش طراحی المان‌های محدود Finite Element نیز مدل و آنالیز تنش و کنترل شدند. به عنوان مثال می‌توان محل اتصال کرد؟

 بالای قوس به فونداسیون و محل اتصال تیرهای عرشه به کوله در طرفین پل را که در مراحل نصب با نیروی محوری کششی به ترتیب 812 تن و 454 تن نیرو و لنگر خمشی 66 تن- متر و 15 تن- متر و گرهِ محل اتصال اولین ستون فلزی به قوس را نام برد.

نصب دو تیپ ابزار دقیق برای سنجش نیرو- جابه‌جایی درنقاط حساس فونداسیون‌ها امکان کنترل تغییرات وضعیت بارگذاری و جابه‌جایی‌های ایجاد شده در عمق‌های 6، 12 و 18 متری پی‌ها را نشان داده و پل در مراحل مختلف نصب تحت کنترل با ضریب ایمنی مناسبی قرار داشت. عرشه‌های دهانه کناری به روش روان‌سازی در موقعیت خود قرار گرفت و جرثقیل‌های دروازه‌ای پس از مونتاژ و ریل‌گذاری در روی پلتفرم‌های پیش‌بینی شده و تقویت عرشه روی پایه‌های بتنی طرفین دهانه قوس که جرثقیل بتواند روی کنسول قرار گیرد، روی تیرهای عرشه نصب شده انتقال یافت و آماده نصب شد.سازه جرثقیل‌ها طوری طراحی شده‌اند که امکان نصب‌‌12‌‌متر سازه به صورت کنسول در جلوی خود را داشته باشد؛ به عبارتی بتواند یک پانل شامل قطعات اصلی، اعضای قطری، تیرهای عرضی، مهاربندهای قوس، مهارهای قطری، ستون‌های انتهای پنل، تیر عرضی، تیرهای طولی و مهاربندهای عرشه را نصب کند. پس از تکمیل یک پانل و ریل‌گذاری روی آن جرثقیل‌‌12‌‌متر به جلو حرکت کرده و این مراحل تا پایان نصب پانل‌‌10 از طرفین ادامه داشت.‌

با توجه به توضیحات داده شده مشخص می‌گردد که در هر 10 مرحله نصب مشخصه‌های سازه خرپایی فضایی اشاره شده تغییر نموده و سازه‌ای جدید می‌شود بنابراین تا این مرحله از هر سمت10 سازه متفاوت و خود ایستا می‌بایست آنالیز شده و نتایج به دست آمده برای نیروهای داخلی اعضا، عکس‌العمل‌های تکیه‌گاهی و تغییر مکان‌های هر مرحله با مراحل قبلی جمع گردد.

نظر بر این‌که پارامترهای هر کدام از مدل‌های سازه مراحل نصب تغییر نموده و مدل قبلی تحت بار تنش می‌باشد، نتایج حاصل از ‌‌ 10‌‌ مدل سازه را نمی‌توان با هم جمع نمود. در نتیجه حجم عملیات محاسباتی و کنترل‌های لازم بسیار بالا رفته و نیاز به روش، راهکار مناسب، دقت و کنترل‌های فراوان دارد تا همانند آنچه که درپروسه و ترتیب نصب قطعات انجام می‌شود، محاسبات نیز در نظر گرفته شود. در هر‌‌10 مدل محاسباتی خرپای نیم قوس به‌طور‌کامل وجود داشت ولی ستون‌ها، عرشه و مهارهای قطری هر مدل مطابق با قطعات نصب شده بود و قسمت اضافه سازهِ خرپای قوس بدون وزن مدل می‌شد و در هر مدل وزن قسمت‌های مشترک با مدل مراحل قبل غیر فعال و وزن قسمت نصب شدهِ جدید فعال و نتیجه آنالیز حاصل با نتایج آنالیز مرحله قبل جمع می‌شد.

بازتاب‌های نیرویی جهت طراحی و کنترل اعضا و بازتاب‌های عکس‌العمل‌ها به منظور طراحی و کنترل تکیه‌گاه‌ها و بازتاب‌های تغییر مکان‌ها، قسمتی از دیاگرام کمبر ساخت پل را تشکیل می‌دهد.

 نصب سازه پل به‌صورت خود ایستا و کنسول ‌(تا طول 126 متر) از طرفین تا پانل مرکزی با تمام مشکلا‌ت و مسایل خاص خود به‌صورت مستقل ادامه داشت. از آنجا که در طول شبانه‌روز فاصله بین دو کنسول حدود  12‌‌سانتی‌متر، تراز ارتفاعی آن‌ها حدود 3 سانتی‌متر و تابیدگی دو مقطع انتهای کنسول‌ها تقریباً تا  5  سانتی‌متر می‌رسید؛ و هم چنین تغییرات ذکر شده در هیچ دوره زمانی ثابت نبود و در هر لحظه محسوس و قابل مشاهده بود، ارتباط و اتصال دو کنسول نیاز  به محاسبات دقیق و تدابیر ویژه‌ای داشت که نتایج عواملی چون نحوه و تابش مستقیم‌آفتاب، دامنه تغییرات دما و باد بود؛ و هم چنین انحراف ناشی از هنگام ساخت و نصب از سوی دیگر باعث افزایش انحرافات مطرح شده می‌شد. به‌عنوان مثال، انحراف از محور طولی پل برای هر دو کنسول به  25  سانتی‌متر می‌رسید.

طبق بررسی‌ها و محاسبات دقیق نتیجه‌گیری شد که اتصال دو کنسول به همدیگر الزاماً در یک دوره زمانی بسیار کوتاه انجام شود بنابراین می‌بایست هر دو سازه را به‌طور موقت با استفاده از مفصل‌هایی به هم متصل کرد. پس از طراحی و محاسبات مفصل‌های مورد نظر، این اتصالات قطعه‌زنی و در دو انتهای قطعات پانل‌های 10 و مرکزی مونتاژ، جوش و کنترل‌های لازم انجام شد و تا زمانی که پین‌های اتصالات در جای خود قرار نمی‌گرفت آزادی حرکات سازه دو کنسول د رمرکز مهار نشده بود. برای نصب قطعات پانل مرکزی یکی از جرثقیل‌ها روی پنل 10 قرار گرفت و کل قطعات پنل مرکزی مونتاژ، جوش و کنترل‌های لازم انجام گرفت. با این وضعیت سازه پل از یک طرف به طول  126  متر و از طرف دیگر 138 متر کنسول بود.

پس از اصلاح انحرافات ایجاد شده با سیستم جکینگ، اتصالات مفصلی موقت با توجه به محاسبات دقیق در زمان تعیین شده توسط پین‌ها قفل شدند. بلافاصله در ناحیه اتصالات موقت، اتصالات دائمی در سه طرف اعضای اصلی قوطی شکل تکمیل شد. چون این اتصالات ظرفیت باربری لازم را داشتند، اتصالات موقت باز شده و باقی مانده اتصالات اصلی کامل شد. با اتصال سازه‌های دو کنسول و یک پارچه شدن آن‌ها سازه اصلی قوس تشکیل شد که پارامترهای سازه‌ای به‌طور کلی تغییر یافته و سیستم سازه‌ای از خرپای فضایی کنسولی یک سرگیردار تبدیل به یک قوس خرپایی بدون مفصل می‌شود که در تکیه‌گاه‌هاگیردار بوده و تحت تنش‌های حین مراحل نصب قرار گرفته است.

در این مرحله نیز مدل‌های لازم و محاسبات ویژه و خاصی عطف به نکات مطرح شده در طراحی قوس‌های بدون مفصل انجام شد.

با بررسی اجمالی از مطالب فوق درمی‌یابیم که سیستم سازه‌ای پل طی مراحل مختلف از شروع نصب تا راه اندازی تغییرات اساسی نموده است، یعنی ابتدا  11خرپای فضایی کنسول یک سرگیردار، سپس یک قوس تک مفصلی در راس و به‌دنبال آن یک قوس دو سرگیردار و نهایتاً به‌صورت یک قوس دو مفصلی مورد آنالیز و طراحی قرار گرفت.

 یکی دیگر از مراحل بسیار مهم، حساس و کلیدی در طراحی و اجرای پل، مرحله آزادسازی تکیه‌گاه‌های موقت و مهارهای قطری بین عرشه، قوس و ستون‌های فلزی پس از نصب و تکمیل خرپای قوس و قبل از نصب و اتصال اسکلت فلزی عرشه در پانل مرکزی می‌باشد، در صورتی که به شکل اصولی و تحت کنترل اجرا نشود، ضربه‌ها و شوک‌های بسیار بالایی به پل وارد می‌شود که موجب بالارفتن تنش‌های موضعی در برخی  نقاط از سازه شده و موجب گسیختگی و فرو ریختن پل می‌شود.

آزاد سازی تکیه‌گاه‌های موقت را می‌توان با در نظر گرفتن عواملی چون مکانیسم اجرا، تجهیزات و امکانات مورد نیاز، نیروی انسانی، سرعت کاهش نیرو از تکیه‌گاه‌ها و انتقال آن به سازه، آزادسازی تمام موانع و قیدهای ایجاد شده در مراحل نصب، نظارت دقیق و بازدیدهای مداوم از نقاط بحرانی سازه و تجزیه و تحلیل آن و ادامه روند پیشرفت کار مورد بررسی و تحلیل قرار داد.

در مدت یک هفته کلیه عملیات آزادسازی به پایان رسید و پس از نصب تیرها و مهاربندی‌های عرشه پنل مرکزی، تعویض تکیه‌گاه‌های موقت عرشه دهانه‌های کناری طرفین پل با یاتاقان‌های دائمی(اصلی) و برش و تعبیه درز انبساط بین عرشه قوس و دهانه‌های کناری عملیات نصب سازه فلزی پل پایان یافته و سازه پل به‌صورت قوس خرپایی دو سر مفصل تبدیل و آماده دال‌گذاری، آرماتوربندی و بتن‌ریزی عرشه شد.

تداخل فعالیت‌های پیمانکار سیویل و پیمانکار نصب سازه در شروع کار، تازگی نوع کار، نیاز به نیروی کار آموزش دیده و متخصص که توانایی کار در ارتفاع را داشته باشد، ابهامات و مشکلات قراردادی، دشواری و زمان بر بودن تأمین ابزارآلات نصب و لوازم یدکی آن‌ها، سقوط ابزارآلات و اتصالات، تعداد زیاد پیچ و مهره‌ها و نیاز به ابزارآلات خاص برای مکان‌های مختلف در سازه، نصب دشوار به‌خاطر توپوگرافی منطقه و منحصر به‌ فرد بودن طرح، محدودیت‌های جاده‌های دسترسی و عدم وجود یک کمیته فنی متشکل از نمایندگانی از سازمان‌های ذیربط و مستقر در سایت که تعهد و مسئولیت در قبال پروژه داشته باشند، پراکندگی در خدمات مشاوره‌ای، مدیریت نامتمرکز و پراکنده، همگی مشکلاتی بود که بر سر راه انجام این پروژه وجود داشتند.

پل بزرگ دوم مسیر نیز با وجود دهانه کوچک تر به دلیل اینکه در دره ای با شیب بسیار تند قرارگرفته است از نظر پیچیدگی اجرایی از اهمیت کم تری نسبت به پل اول، برخوردار نمی باشد . وزن این پل حدود 1500 تن است. دهانه اصلی و میانی پل دوم نیز به‌صورت قوس از زیر با دهانه قوس 177 متر، مرکز تا مرکز مفصل‌ها 59/158متر، خیز قوس 40 متر اجرا شده است. دو دهانه 19 و 20 متری پیوسته و متصل به عرشه قوس بر روی پایه‌های بتنی قرار دارد و طول کل عرشه 216 متر و عرض 8/11 متر با دو خط عبور و دو پیاده رو در طرفین مطابق پل اول اجرا شده است.

در نهایت با تکمیل راه جایگزین و پل‌ها در روز 18 آبان1383 این پروژه با آب‌گیری سد کارون 3 به بهره‌برداری رسید. در مجموع برای احداث پل های قوسی به عنوان بزرگ‌ترین پل های قوسی کشور ۹۰ میلیارد ریال و نیز تملک اراضی و واحدهای مسکونی روستاییان ۸۵ میلیارد ریال هزینه شده است.

منبع: وبلاگ سهیل آل رسول - payamomran.blogfa.com


نوشته شده در تاريخ جمعه بیست و نهم مرداد 1389 توسط 
نكات ایمنی که در عملیات حفر چاه چاپ فرستادن به ایمیل

در عملیات چاه‌کنی تا عمق 5 متر، وجود حداقل دو نفر و با افزایش عمق چاه، حداقل وجود 3 نفر برای ادامه عملیات الزامیست، با شروع حفر انباری چاه یک نفر کمک کلنگ‌دار به افراد گروه اضافه می‌شود. برای حفاظت کارگران از خطر ریزش اطراف چاه، باید در محل ایستادن کارگران تخته یا الوارهای زیرپایی با مقاومت و پهنای کافی گذاشته شود. برای جلوگیری از سقوط خاک و سنگ به داخل چاه، دور دهانه باید آستانه‌ای به عرض حداقل 15 سانتیمتر با مصالح مقاوم تعبیه گردد.
مقنی قبل از ورود به چاه برای عملیات چاه‌کنی، باید طناب نجات را به کمک کمربند ایمنی مخصوص به خود بسته باشد.
در مواردی که نوع مصالح استخراج شده از حفاری چاه به صورتی است که کلاه و سپر حفاظتی تکافو نمی‌کند، باید در فواصل مناسب از دیواره میله چاه پناهگاههایی تعبیه شود که در صورت لزوم مقنی در این محلها مستقر شود.

خاک حاصل از کندن چاه، نباید به فاصله کمتر از 2 متر از کناره‌های چاه ریخته شود به نحوی که احتمال ریزش آن به داخل چاه وجود نداشته باشد.

در صورتی که احتمال کمبود اکسیژن در اعماق چاه وجود داشته باشد، باید نسبت به تعبیه وسایل مناسب برای هوادهی به داخل چاه اقدام شود، این وسایل باید به تجهیزات ایمنی لازم برای جلوگیری از خطر برق‌گرفتگی مجهز شده باشند.

وجود علائم قراردادی بین مقنی و فردی که در بالای چاه مستقر است، ضروری بوده و باید فرد مستقر در بالای چاه همواره از وضعیت مقنی آگاه باشد.

کلیه کارگرانی که در نزدیک چاه به کار مشغول هستند، باید به کمربند ایمنی و طناب مجهز باشند. سر طناب باید به محل مناسبی محکم شده باشد تا از سقوط احتمالی آنها به داخل چاه جلوگیری شود. با پیشرفت کار چاه‌کنی بخصوص در موقع بارندگی، باید دیواره‌های چاه به وسیله مقنی مورد بازدید قرار گرفته و از ریزشی نبودن دیواره چاه اطمینان حاصل شود، چنانچه رطوبت بیش از حد مشاهده گردد، باید بررسیهای لازم انجام گیرد و در صورت لزوم عملیات متوقف شود، سپس پیش‌بینیهای لازم طوری صورت پذیرد که برای مقنی و کارگران خطری وجود نداشته باشد.

در تأمین روشنایی داخل چاههایی که وجود گازهای قابل اشتعال در آنها محتمل باشد، باید از چراغهای قوه‌ای با حداکثر ولتاژ 12 ولت استفاده شود.

هنگام حفاری چاه در عمق بیش از 2 متر، باید وسیله‌ای به عنوان سپر در پایین چاه مورد استفاده قرار گیرد که هنگام سقوط احتمالی اشیا مانع برخورد آن با مقنی باشد.

بعد از خاتمه کار روزانه علاوه بر پیش‌بینیهای احتیاطی لازم برای جلوگیری از سقوط افراد و حیوانات به داخل چاه، دهانه چاه باید به نحوی مطمئن با صفحات مقاوم و مناسب پوشیده شود.

رعایت مقررات حفاظتی حفر چاههای دستی مصوب شورای عالی حفاظت فنی الزامی است.

منبع: مشخصات فنی عمومی کارهای ساختمان - شماره 55
       به نقل از وبلاگ مهدی هاشمی - mahdihashemi.blogfa.com


نوشته شده در تاريخ جمعه بیست و نهم مرداد 1389 توسط 
سی و سه پل اصفهان چاپ فرستادن به ایمیل

این پل كه در نوع خود شاهکارى بى‏نظیر از آثار دوره سلطنت شاه‏ عباس اول است، به هزینه و نظارت سردار معروف او الله ‏وردى‏خان بنا شده. این پل در حدود 300 متر طول و 14 متر عرض دارد و طویل‏ ترین پل زاینده ‏رود است که در سال 1005 هجرى ساخته شده است. در دوره‌ صفویه‌،مراسم‌ جشن‌ آبریزان‌ یا آبپاشان‌ ارامنه‌ در کنار این‌ پل‌ صورت‌ می‌گرفت‌. ارامنه‌ جلفا، مراسم‌ «خاج‌ شویان‌» را نیزدر محدوده‌ همین‌ پل‌ برگزارمی‌کرده‌اند. پل‌ مزبور یکی‌ از شاهکارهای‌ معماری ‌ و پل‌ سازی ‌ ایران‌ و جهان‌ محسوب‌ می‌شود.

این پل در سال (1011 ه.ق) باهتمام الله وردیخان سپهسالار شاه عباس و بنا به فرموده شاه مزبور شروع به ساختمان گردید و به طورى که در عالم آراى عباسى نوشته شده داراى چهل چشمه (دهانه) بوده که از هر چشمه آب خارج مى‏گردیده، پلى بسیار عریض و طویل و مرتفع، شالوده آن با سنگ و آهک ریخته شده و با آجر و گچ بالا رفته و دو طرف پل غرفات و غلام گردشهاى بلند فوقانى ساخته و چشمه ‏هاى زیرینش زیاد با عرض و مرتفع و طول آن 350 قدم و عرضش بیست قدم و شش معبر به این شرح داشته است.

سی و سه پل اصفهان

سی و سه پل اصفهان

1- راه وسط که مخصوص عبور سواره و گردونه‏ها بوده است. 2 و 3 دو طرف پل که از میان گالالریهاى زیبا مى‏گذشت و به پیاده‏رو تخصیص داشت. 4 و 5 پشت بامهاى گالارى از دو طر ف که دور آن نرده داشته و موقع طغیان رود تفرجگاه باشکوهى بوده است، سرانجام گالاریهاى پل به وسیله پله‏هاى ظریف به زیر پل متصل مى‏شد و از زیر پل هم موقع کم آبى عبور مى‏کردند. 6 از زیر پل بود.

مساحت این پل را سیاحان انگلیسى چهارصد و نود یارد تعیین کرده‏اند. هفت دهانه این پل گرفته شده و اکنون 33 دهانه دارد و از این رو به پل 33 چشمه شهرت دارد.

این پل را به نامهاى: پل شاه عباسى - پل الله وردیخان - پل جلفا - پل چهل چشمه - پل سى و سه چشمه خوانده‏اند و وجه تسمیه هر یک چنین است: 1- پل شاه عباسى از آن جهت گویند که شاه عباس اول دستور بناى آن را داده است و چون به مباشرت و اهتمام الله وردیخان ساخته شده به پل الله وردیخان معروف گردیده و از لحاظ اینکه معبر مردم به جلفا بوده آن را پل جلف هم گفته‏اند و چون در ابتداء چهل چشمه داشته پل چهل چشمه و اینک سى و سه چشمه دارد به پل سى و سه چشمه اشتهار دارد.

 این پل براى اتصال خیابان چهار باغ کهنه عباسى به خیابان چهارباغ بالا و باغ هزار جریب و عباس آباد ساخته شده است. این پل در جشن آبریزگان و آب پاشان محل اجتماع شاه و بزرگان و شعراء و رجال و سایر مردم بوده است.

 شرحى را که سرپرسى سایکس انگلیسى راجع به این پل نوشته از نظر اینکه بسیار دقیق و وضع پل را در آخر قرن سیزدهم و اوائل قرن چهاردهم هجرى مجسم مى‏نماید عیناً در اینجا نقل مى‏گردد:

 خیابان با شکوه چهارباغ از یک طرف به پل الله وردیخان کشیده مى‏شود، که با این که حالیه روى بویرانى نهاده معذا از پل هاى درجه اول عالم به شمار مى‏آید، اینجا از یک شاهراه سنگ فرش شده وارد مدخل عمومى پل مى‏شوند شکل فوق العاده و شگفت آور این پل که 388 یارد طول آنست مقابل یک جاده سنگ فرش شده‏اى به عرض 30 پا بدین قرار ایت که در آن سه معبر در سه سطح مختلف تعبیه شده که یکى از آنها راه معمولى روى پل است که در دو طرف آن طاق نماهاى سرپوشیده ساخته‏اند. طاق نماها از طرفى به رودخانه و از طرفى به همین جاده مشرف مى‏باشند، در بالا و پائین این طاقنماها که با تابلوى نقاشى شده تزیین یافته بود هر کدام یک پیاده روهائى است که با پلکانها به این راه اصلى وصل مى‏شود و در کنار سطح رودخانه معبر دیگرى است که به طول رودخانه امتداد مى‏یابد. تنها انتقاد مخالفى که براى ساختمان این پل مى‏شود کرد و آن از تصویر هم نمایان است آنکه، پل مزبور در مقابل جریان ضعیف و باریک زنده رود در بیشتر فصول سال بیش از، اندازه جنبه ظرافت دارد.

منبع: پایگاه اطلاع رسانی معماری و شهرسازی - uan.ir 


نوشته شده در تاريخ جمعه بیست و نهم مرداد 1389 توسط 
تمامی حقوق این وبلاگ محفوظ است | طراحی : پیچک